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Modified effective-field approach to low-dimensional spin-1/2 systems
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Two different generalization schemes for the molecular field approximation are described. Both contain the
possibility to incorporate generalized effective fields that induce correlations between the degrees of freedom
at the boundary of a chosen cluster. Applications are presented for low-dimensional spin-1/2 systems. For the
Ising models the critical couplings and critical exponents as well as the spontaneous magnetization curve are
determined. An application of the method to the quanﬁmﬁ one-dimensional Heisenberg model is presented
and reliable low-temperature estimates of the specific heat are evaluated. The data are combined with the
guantum transfer matrix predictions for large system sizes and this leads to the following prediction for the
low-temperature specific heat.= AT* with a=0.35+0.07.[S1063-651X97)08006-9

PACS numbs(s): 64.60—i, 75.10.Hk, 75.10.Jm, 75.40.Mg

[. INTRODUCTION dicted a lower valu¢13]. Our estimatex=0.35 is consistent
with that inferred from the Monte Carlo simulatiopE3].
The molecular field approximatiotMFA) remains an im-
portant tool in the study of complex problems in solid-state Il. FORMULATION OF THE METHOD
physics and statistical mechanics. Whenever exact descrip- ) i _ i )
tion of the critical behavior is impossible, usually a qualita- L€t Us consider first a classical spin system with short-
tive understanding of the phase diagram can be achieve@n9e mteractlons. The lattice then can be divided into a
within MFA [1,2]. In higher dimensions, where most of the finite cluster(}, its boundaryd(}, and the complement of
sophisticated methods fail, MFA, in general, works better{) U dQ)denoted by2. The Hamiltonian of the system can be
than in lower dimensions, and its predictions for the criticalwritten in the form
exponents become exact above the upper critical dimension. _
Due to its wide applicability, the mean field approach de- —BH=Hy(Q,dQ)+H,(Q,Q), (1)
serves further study. Especially in low dimensions many cor- ] o
rection schemes have been undertaken to improve the accihere8=1/kgT andkg is the Boltzmann constant. This im-
racy of the MFA results. plies for the thermal expectation value of an operator
In the present paper we summarize our ideas, previously -
presented in some preliminary repof84], and we supple- (A)= 2 A(O-,T)eHO(U'vT)‘*'Hl(TyU')/
ment them with some applications to both the classical Ising (10,0}
and the quantum Heisenberg model. We show how the no- o
tion of correlations can be embedded in the MFA approach > gHolon+Hi(mo) 2
and how the idea of the effective field with correlations can  {7+,}
be merged with the exact finite-size calculations for quantum )
systems. Despite the relatively small system sizes availabi@here the spin degrees of freedom are denoted @$), r
in the direct diagonalization technique, good estimates of thes d€}, ando € (). Hereafter we assume thatA(o, 7) and
calculated quantities are obtained, when compared to the exve aim at finding an efficient way for estimating the average
act ones for the one-dimensiordD) XY model[4,5] or to  (2). We follow two approaches.
those well established in the literatUi@-8|, or even to those In the first approaclithe P schemg the boundary() is
calculated here in the framework of the quantum transfefixed in a particular state or is described by a probability
matrix. This demonstrates the advantages of the method falistribution P(7) so that the expectation valu@d) is a
the investigation of the thermodynamic properties of low-weighted average
dimensional spin systems and prompts us to calculate the
low-temperature critical exponent for the specific heat of the _ H H
1D isotropic Heisenberg model. The conformal field theory (A % P(T)({EU} Aee {Z,} © 0)' ®
has failed to give a conclusive answer in this case s¢har
Some approximate theories, including the Bethe ansatz intérhe exact expression f&?(7) is given by
gral equation method, have yielded the spin wave value
a=1/2[10-12 whereas the numerical techniques have pre- P(r=3 eHO(U,T)Z eHi(o.7) 2_ eHotHi (g
{o} {o}

{r,0,0}
*Electronic address: gjk@pearl.amu.edu.pl so that the probability distribution functioR(7) exists and
Electronic address: raf.dekeyser@fys.kuleuven.ac.be can be written as
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of standard MFA is indeed thatis proportional to the order
P(r)=2"N 1+2 (r)7i+ E (T 7T parametex o); therefore, we will calla the effective order
' Y parameter. An extension of the mean-field theory similar to
our Q approach has been developed by Suzuki and applied in
+ E (riTjm) Tt - |, (5 the context of the coherent anomaly methad].
(1R The functionQ( ) can also be expanded in a form such as

whereN is the number of all ther spins and the prefactor Eq. (8), with coeff_icie_nts that in g(_aneral V\./i”. be _different
ensures the normalization. The standard MFA consists in fixifom those appearing in the expansiorFofThis implies that

ing the boundary spins and its distribution is given by theth® effective Hamiltonian

expression

H'(T):z aiTi+Z bijTi’Tj‘l“", (12)

Po(r) =11 8(z—m), (6) | "
| apart from the standard linear term i) may also contain

where m is a parameter calculated self-consistently fromhigher-order terms irr, i.e., some correlations between the

m= (o). An improved choicd 14,15 for the Ising model is border spins.

To improve the simplest approximation, two scenarios
can be followed both within thé approach of Eq(4) or
within the Q approach of Eq(10), which are based on the
concept of the self-consistent parameters and the series ex-
pansion technique. Self-consistent conditions can be imposed
on the magnetization and the spin-spin correlation functions
in order to determine the coefficientsihor Q. Correlations
where the variables; are subject to the independent binary inside ) may, e.g., be imposed to be equal to equivalent
distributions. The probability distributioR,(7) can be eas- correlations inside)(). Besides nearest-neighbor, also next-
ily obtained from the expressia®) by a simple decoupling nearest neighbor or higher-order correlations may be consid-
of the correlations. Another decoupli®,(7) of the prob- ered. One should remark that, although the number of coef-

Py(n=2"N[T [(1+m)s(r—1)+(1—m)(7+1)]

=2"MT (1+mm), ()

ability distribution function consists in ficientsa;, bjj, ... in the exact expressions is finite, it is in
general not possible to write down a closed set of self-
_ A-N consistency equations for them; the number of available
= +a; +bi1iT)- - :
Par)=2 H (1+a T')il;[j (tbyj7i7)--- (8 equations is always smaller than the number of parameters.

However, even in the lowest linear approximation in Eg.
where the coefficientb;; take into account the correlations (12), our self-consistency conditiofo)=(r) leads to some
between the spins of the border. The symmetry of the improvement with respect to MFA.
cluster will be reflected in symmetry properties of these co- In the second scenario, standard series expansion tech-
efficients. nigues in expressiond) or (10) can be applied and approxi-

A second approacfthe Q schemg is formulated in the mate expressions can also be found inhandQ schemes
spirit of the mean-field theory. It is based on the idea that onéor the correlations induced througth,.

may correct for the neglect d® by introducing extra mo-  Both theP andQ approaches in the lowest ordegua-
lecular fields acting on the bounda#f) of the system and tions (7) and (11), respectively can be combined with the
the thermal average mean-field renormalization-group meth@lFRG) [18], to

obtain nonclassical critical exponents. The renormalization
, , mapping K'=K'(K,h), h"=h"'(K,h) is found from the
— Ho(o,7)+H'(7) Ho(o,7)+H'(7) i X X ) N
(A) {TZU} AeTo {%} ere © scaling behavior of the cluster magnetizations in Eher
Q approach. Ifm;(K,a,h) represents the magnetization of
is determined by the effective field Hamiltonidd' (7) de-  thejth system {=1,2) for a given coupling, an effective
fined as order parametea and magnetic fieldh, and we define the
rescaling factot throughl9=N/N’ for two clusters withN
eH’(T)EQ(T):Z RCHEX) (10) andN’ sites N>N'), then within MFRG[ 18]

{o}

This scheme would be exact if one could calculate the sum in

Eq. (10). The standard cluster MFRLG] includes only the  wherey,, is a critical exponent, and the effective order pa-

symmetry breaking fields in the effective Hamiltonian rameters fulfill a’=19"Yra. Implementing MFRG, an at-

H'(7) so that tempt to include correlations in a self-consistent way may
lead to some inconsistencies.

my(K’,a’,h’)=19"Ynm,(K,a,h),

Qo(n=I1 (1+a’ri)ocexp<az Ti). (12)
! ! I1l. APPLICATIONS TO THE ISING MODEL

The presence of an effective fiedds due to the spontaneous  The efficiency of the method is demonstrated for the Ising
symmetry breaking of the order parameter. The assumptiomodels
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TABLE I. The critical couplingK, of the classical 2D Ising TABLE Ill. The critical exponentsy andyy of the 2D Ising
model found for different sizé of the cluster. The second and third model for different linear sizé of the cluster. MFRG denotes the
columns display the standard MFA and MFRG results. The fourthresults obtained by using the MFRG meth&R®® and P5¢ denote
column contains the results obtained within the self-consigient the results of thé® scheme combined with the MFRG method on
scheme, whereas the fifth and sixth columns contain those fountivo and on three clusters, respectively. The columns denoted by
from the P approach combined with the MFRG method on two andQP-R€ contain the estimates of ti@ scheme and Padsproximant
on three clusters, respectively. The seventh column shows the renalysis in conjunction with MFRG.
sults evaluated within the self-consiste@t scheme, while the
eighth and ninth columns illustrate the predictions obtained within. MFRG PR¢ pR¢ QPRG MFRG PRC pRE QPRCG
the Q scheme by using series expansions and thé Rpgieximant yr Vi
technique for the correlation functions.

2 069 0.822 0.801 1.50 1.490 1.715
L MFA MFRG P PRG  pRE  Q Q° QPFRé 3 0.78 0.930 0.942 157 1585 1.609
4 082 0.979 0.996 160 1.636 1.676
1 0.250 0.324 0.346 0.408 5 084 1.62
2 0286 0361 0.382 0.371 0.412 0.415 0.428 Exact 1.000 1.875
3 0.308 0.381 0.395 0.385 0.404 0.417
4 0.323 0.393 0.395 0.418 0.420
5 0.335 0.401

The critical exponenty; andyy for the thermal and or-
Exact 0.4407 dering fields follow from the linearized recursion relations
and are given in the corresponding columns of Table Il for
d=2 and Table Il ford=3.
For the Q and P schemes, we have performed self-
H= _K% OiTi+s) (13 consistent calculations in 2D including the pair correlations
.9 up to the third neighbors. In Table IV the variation of critical
couplingK, is shown for different system sizés and dif-
with nearest-neighbor interactions. Hefies) denotes that ferent number of correlations within th@ approach. The
the summation runs over the nearest-neighboring pairs dptal number of correlations is specified in the first column.
spins. Whenn=0, only symmetry breaking fields are present. In
At first, we consider clusters with? sites on the hyper- the last row, three successive correlations are taken into ac-
cubic lattices ind=2 andd=3 and we apply thé® scheme. countand the self-consistency conditions require cluster with
The critical couplingsK .= J/kgT, are given in Tables | and linear sizeL=3. The best results found self-consistently for
Il for d=2 andd=3, respectively. The cluster MFA and different cluster sizes were already used in Table I. Those
MFRG results are displayed in the second and third columndound from theP approach are given in the fourth column,
respectively. In the fourth and fifth columns of Tables | andwhereas those from th@ approach are in the seventh col-
Il our K, predictions are given for the approach with up to umn.
two correlations in Eq(8) and for our implementation of Next we report some self-consistent results for the trian-
MFRG in the framework of the® scheme on twd. and Qular lattice, which is especially suited for our methods, and
L—1 clusters(denoted byPR®). Moreover, thePR® esti- we approximate botl? andQ by an expression such as Eq.
mates are further improved id=2, implementing a three (8). We choose aif) cluster consisting of a single site with
cluster MFRG[19] (with L, L—1, andL—2 cluster$, as  Spin variablec whereas its six nearest neighbors with spin
demonstrated in the sixth column of Table(denoted by variablesr form the bordergQ). The results foK in both
PRO). approaches are given &°andQ®¢in Table V. In the first
approximation, referred to as order 4,is determined by
imposing{o)=(7) andb=0; in the second approximation
the framework of theP scheme for the classical 3D Ising model b is determined throthUT}:<Tsz>f These estlmates of
with different sizeL of the cluster. The second and third columns K¢ should be compared with the simple mean-field result
display the standard MFA and MFRG results. The fourth columnKc=0-1667 and the exadt.~0.2746. In the second ap-
shows the result calculated self-consistently without correlations.
The fifth column shows an implementation of the MFRG method in  TABLE IV. The critical couplingsK., in the framework of the
the P scheme. The corresponding critical exponentandy, are  Q andP schemes for the 2D Ising model with different linear size
presented in the seventh and ninth columns and preceded, for corh-of the cluster. The number of succeeding correlatiorscluded

TABLE Il. The critical couplingK, and the critical exponents in

parison, by the original MFRG ones. in self-consistent calculations is defined in the first column.
L MFA MFRG P PR MFRG PR¢ MFRG PRC Q scheme P scheme

yr Yu n L=1 L=2 L=3 L=4 L=1 L=2 L=3
1 0.167 0.197 0 0.346 0.353 0.368 0.378 0.324 0.342 0.355
2 0.182 0.207 0.209 0.82 0.902 200 19971 0.376 0.392 0.400 0.361 0.370
3 0191 0.212 0.95 2.08 2 0.412 0.414 0.416 0.382 0.395

Exact 0.22165 1.59 2.484 3 0.417 0.420
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TABLE V. Estimates for the critical coupling for the trian- 1 . .
gular Ising model. The second and third columns illustrate the self-
consisten andQ predictions with no correlation@ghe first ordey 08l
and the nearest-neighbor correlatioftse second ordgr respec-
tively. In the last two columns the estimates calculated by using
series expansiong)®d and the Padapproximant techniqueq®) 061
are given. (o)

04+

Order Psc Qsc Qse QP
1 0.197 0.2025 0.2270 0.2270 02f
2 0.226 0.2522 0.2373 0.2415
3 0.2441 0.2542 0905 1
4 0.2498 0.2562
Exact 0.2746

FIG. 1. The magnetization as a functionkf *=kgT/J for 2D
Ising model.

proximation, it turns out that the pair correlatidior7) is
finite and attains at criticality the value 0.492, which is of the The corresponding series expansions @may also be
correct order of magnitude with respect to the exact valueombined with the MFRG method on two clusters consisting
0.667. of N'=1 andN=4 sites. This simple procedure leads to
We report also the results found from a series expansiopather accurate estimates &f. (the column denoted by
of Q on the same triangular lattice. In the definitit®0) of QP “RS jn Table ) and the critical exponentg; and yy
Q we write (Table IIl). An intriguing question is whether the values ob-
- - tained fory; really converge to 1, or overshoot this exact
e“71%ux(1+xai0), value. Unfortunately, calculations ftw=5 are at present not
feasible; calculations on too large clusters are furthermore
with x=tanlK, and we expand the correlation factors in as-pot in the spirit of the present approach.
cending powers ok. It can be noticed thaQ contains a Our approach is also a suitable tool for the calculation of
factor (1+br7)) for each pair of nearest neighbors dfl  he temperature-dependent thermodynamic properties of the
and an extra factor (¥cr7) for each next-nearest- |sing model. The magnetization profiles are presented in Fig.
neighbor pair, with 1. The lower dotted curve is drawn according to the exact
result of Yang[20] while the upper one illustrates the stan-
dard MFA predictions. The solid curves lying in between
have been calculated here within t@escheme for =3
cluster. The labeh represents the number of succeeding pair
correlations included in our approach. The upper curve dem-
onstrates the behavior of magnetization found from the self-
consistent calculations with no correlations between border

parameterd andc. In Table V we present the variation of SpINs. The middle one, Iapeled=1, represents OL@_ pre-

K. according to the number of terms kept in Egi4). Fur- dictions |f. iny nearest-neighbor correlaﬂops are lnclgdgd.

thermore, each approximation may be improved by replacind N rémainingi=2 curve shows the magnetization profile if

b by a corresponding Padepproximant inx. These results, Poth the nearest- and the next-nearest-neighbor correlations

referred to afQ®, are displayed in the fifth column of Table areé included inQ. For the sake of clarity, we have only

V. plotted in Fig. 1 our magnetization curves fbr=3. The
Similar series expansion calculations are carried out fofmprovement of the magnetization behavior is also very sys-

the square lattice. We have evaluated the magnetization pgematlc with each subsequent number of correlations taken

sitem; andm, for L=1 andL=2 clusters, using pair cor- into account for smaller clusters.

b=x(1+x+2x?+4x3+--+)
c=x*+.... (14
The series expansion results fi§¢ are given in the fourth

column of Table V, referred to &3¢ Here various approxi-
mations are obtained fdp, defined by the order ir of the

relation functions up to the sixth order in The Q approach of Eq(10) proves to be the most effi-
cient. This is most pronounced in one-dimensional problems,
(Ta0p) =X+ X34+2X5+ - - -, where theQ method yields exact results for classical 1D
Ising systems in a magnetic field. This success is due to the
(0p0) =X2(1+2X2+4x4+ - - ), (15) fact thatH' contains E\Iy those correlations that come from

interactions through() and not those from interactions
wherea andb denote the nearest-neighbor sites wheteas through(). The correlation between the leftmost and right-
and c represent the next-nearest-neighbor sites. Using Padwuost site of a finite segment of a line, however, is completely
approximants we have obtained the critical couplings giverdue to interactions through this segmentr{fand r, are the
in the column labele®® in Table |. We remark that there is two boundary spins of the segment, this means that
a fifth-order next-nearest-neighbor correlation in the largeQ(r,,7,) does not contain any correlation and factorizes as
system. Q=q(71)d(7,). The functionq(r) can then be determined
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by a recursive argument and this makes the Bethe scheme 0.14 . . ; .
exact in one dimension, whet¢’ consists only of a simple
molecular fieldh( 7+ 75). 0.12} ", .
IV. APPLICATION TO THE QUANTUM o |
HEISENBERG MODEL i
L |
For quantum mechanical models, the factor ékp(in 0.06
general cannot be extracted from the Boltzmann factor. In- 0.04r e -
stead, we should define L e
0.02} 1
eH0+H’:Z eHo(U,T)+H1(T,U), (16) 00 1’ 2' é 4Il 5
v kgT/J

whereH’ may also depend on the variablesfrom the in- . _ , ) .
terior of the clustel). FIG. 2. The zero-field specific heat per site for the isotropic 1D
Approximate expressions fét’ may be derived from Eq. Heisenberg model.
(16) using, e.g., the Baker-Campbell-Hausdorff formula or . . -
Feynman'’s identity. The previous mean-field-like scenario isb_oundary conditions. The results |Ilust-rated bY dots in Fig. 2
also possible here, if the strongest contributionsl tcappear y|eId_ the smooth curve and are consistent W'.th those fpund
at or around the boundagf). By symmetry arguments, the previously [6—8]. For every c0n5|der_ed point in the region
form of the most important terms id’ can then be imposed k_BT/‘]SZ‘O’ computations were ca_rrled out b.V. the star_1dard
and its parameters can be determined through Se”f_mlte-segment calculations, i.e., with no additional Heisen-
consistency conditions. The first successful applications Oiferg interaction |ncIu<_jed at the ends .Of a c_haln
this scenario have been undertaken for X model[4]. 2§N$15) as well as with up to 2 extra effecfu\{e couplings
In this work we follow the mean-field scenario and we useX '”C'“‘?'ed- FoikgT/J=2.0 only the standard finite segment
our method in conjunction with the finite-chain diagonanza_calculatlons have been performed and the results coincide

tion technique for the Heisenberg model. The exact diagoith those found from the high-temperature expansiafs
a g g We have found the extrapolated data plotted in Fig. 2 for

nalization technique has been widely used for the low- . Sen X
dimensional spin systen|$,8,21]. At higher temperatures three different approximation&l7)—the one with no extra

the extrapolation technique yields then very consistent prelntéractions in the external sectors and those Withl and

dictions in the macroscopic limit. The convergence of thel =2 additional interactions. As an example, Fig. 3 shows
extrapolations deteriorates with decreasing temperature. O{ff€ variation of the finite-size specific heat estimafegper

aim is to improve the convergence of the low-temperature®t®; in units ofkg) with respect to M for kgT/J=0.1. The
specific heat predictions. standard finite chain results are illustrated by the squares in

As to the 1D isotropic Heisenberg model, there is no broFig. 3. The results obtained with one and two self-consistent
ken symmetry in this model and we have no external field iparameters are given by triangles and asterisks, respectively.
H’. We expect the main contribution td’ in the form of

additional Heisenberg interactions between the spins at the 0.12 : : : , : . :
edges of the finite segment. Thus the effective Hamiltonian . .
can be chosen in the form *k KK

0.1} MAAA A A i

N—-1

H0+H’%%Ki§15i~&i+l 0.08% %%JD A
¢+
F+
+

]
L
1 - - - - 0.06 o -
+ _21 Ki(oi-oir1ton-i-on-i+1), (17)
=
0.041 = :
whereK denotes the bare couplings and tkedenote the ' +
additional nearest-neighbor couplings for the external sectors
of the chain of the lengtiN. L is the number of such addi- 0.02p O I
tional terms taken into accougvidently, we must choose +
L_s N/2). o represents here theT vector of the P_auli spin ma- 00 0.05 01 0.15 02 0.25 03 '8.'35 04
trices. The coupling&; are subject to self-consistency con- m~-2 and N-1

ditions for the corresponding correlation functions: we must

impose that the nearest-neighbor correlations in the external g 3. variation of the zero-field specific heat per site at

sectors are equal to the average correlation function in thg_1/3=0.1 against M for the finite-chain diagonalization data

internal segment. (83<N=15; the symbolg], A, and* represent the standard, one-
Using our method we have calculated the zero-field speand two-parameter approximation, respectiyeind against 2

cific heatC of the model under consideration in a wide tem- for the transfer-matrix data# symbols, 3xm=13). All data con-

perature region, performing direct diagonalization with freeverge towards the point denoted by a circle.
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. . . . . . w TABLE VI. Scaling analysis of the low-temperature numerical

—0-96T | specific heat data. The fitting is carried out in the temperature re-
—0.98 gion starting fromkgTo/J and the width 0.04. The leading critical
-1 exponent is denoted by, the corresponding amplitude @y, the
1o subleading exponent bg, and the corresponding amplitude By

log,o C ’
—1.04¢ kgTo/J n a A B B
—1.06 0.04 7 0357 018 0480  0.190
—1.08¢ 0.04 12 0.320 0.180 0.501 0.130
—1.1¢ 0.04 15 0.304 0.175 0.494 0.120
D) 0.05 7 0.367 0.184 0.673 0.182
—1.4-1.35—-1.3—-1.25-1.2—-1.15-1.1-1.05 —1 0.05 12 0.382 0.210 0.017 0.188
logyo(ksT/J)

0.06 7 0.337 0.177 0.541 0.174

FIG. 4. The logarithm of the zero-field specific heat per site for

the 1D Heisenberg model vs the logarithmigfT/J. maining part of Table VI. The data for the leading exponent
One can see a qood converaence of the data towards t% and the corresponding amplitudeare consistent and en-
9 gence I 4ble a conclusiom=0.36+0.06 andA=0.20+0.03.
extrapolated value denoted by a circle in Fig. 3. The effec- ; .
Another attempt to find the exponeatis related to some

tive interactionsK; at the en.ds of thg chain improve the thermodynamic considerations for the specific heat and the
convergence and yield consistent estimates of the extrap(&—Jtal entropy gain. As to the specific heat

lated values down t&gT/J=0.04 with an accuracy higher
than beford 6].

In order to verify our results in the low-temperature re-
gion (kgT/J=<1.0), we have also performed extensive quan-
tum transfer-matrix(QTM) [22] calculations based on the
real-space decomposition. The details of the technique can ) ] ] )
be found elsewher22,23. We have considered chains with WhereU(T) means the internal energy in units of the inter-
length up toN=360 and we have reached the sizen the action parameted. This integral can be calculated numeri-
Trotter direction m<13) far beyond what we are aware of cally under_a smooth curve _spanned over our numerical data
in the literature. An example of our QTM data is included in C(T), starting from a certain temperatufle. In order to
Fig. 3 and plotted by crosses againsind/ We have found estimate the corrgspondlng contribution fd‘(STO, thfe
our QTM extrapolated values in ri? consistent with our C(T) dependence is approximated by the leading term in Eg.
effective-field results based on the approximatiai). Ac-  (18). Referring to the conditiofl9) and imposing continuity
tually, despite the large system sizes reached in our QTMT=To, the unknown amplitudé and the critical exponent
calculations, the data follow a rather steep curve and do not _can be evaluated. The calculations were performed for
ture found from the finite-chain extrapolations. ity of our solutlon§. Taking into regard_ the scatter of the

We would like to exploit the high accuracy of our results presented in the second and third columns of Table
specific-heat results and to extract the corresponding criticaf!l, we get «=0.33+0.02 andA=0.23+0.02. _
exponent @ in the zero-temperature limit. The low-  We can also estimate numerically the total entropy gain,
temperature behavior of the specific heat in the log-log scal¥hich amounts to In2. Assuming the power-law behavior of
is illustrated in Fig. 4 for kg T/J<0.1. Our numerical data the specific heat in the low-temperature limit and the relation
are represented by diamonds and are connected by a straigﬁz C(T)dT/T, the values of the parametesisand A can

e

line. Due to the observed nonlinearity, corrections to scaling’@ found in a similar way as before. In this case the low-
in the form temperature contribution to the integral is significantly en-

fmC(T)dTZU(OO)—U(O)=O.5, (19
0

C=AT%1+ BInBT) (18 TABLE VII. Estimates of the specific-heat critical exponent

and the amplitudeA obtained from a numerical analysis of the
have to be taken into account. We have tried first the pOWerl_hermodynamic identities. For different intermediate temperatures
law correction term but we concluded that our data allowXe o/ the second and third columns present the results when the
only logarithmic corrections. We have fitted the scaling form'fjentlty for the specific hed is exploited, whereas the fourth and
(18) to our numerical data for a given numhermf the data fifth columns present those for the entroBy
points starting from the reference temperatgd,/J. As T /] o A o A
the distanced between successive temperatures amounts to° °

0.01, we have fixedgTy/J and we have performed the fit- c s

ting procedure in the temperature regioA. The results of 0.04 0.332 0.225 0.412 0.291
our analysis are given in Table VI, where the first columno.05 0.341 0.234 0.409 0.286
contains the reference temperature and the second colunmoe 0.343 0.235 0.404 0.279
specifies the width of the temperature region. The unknowmy o7 0.334 0.228 0.398 0.270

critical exponents and amplitudes are collected in the re
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hanced. After analysis of these resu[f@ble VII, the fourth  defined an effective Hamiltonian with extra nearest-neighbor
and fifth column$ we have obtainedr=0.41+0.02 and interactions at the end of the chain.

A=0.29+0.02. As an illustration we have applied our approach to the
Taking into account our analysis we end up with the con-<lassical Ising model and to the 1D Heisenberg model. We
clusion have seen for the Ising model a systematic improvement of

our predictions for the critical couplini. and the critical

a=0.35+0.07 and A=0.23+0.05. (20 exponentgimplementing MFRG both for theP and theQ
approach. In the qguantum case we have evaluated the specific
V. CONCLUSIONS heat and we have extracted the corresponding critical expo-

L ) nent. We have confirmed our low-temperature estimates of
We have presented a effective-field approach applicablg,g specific heat by large-scale QTM calculations so that we

to classical and quantum systems with short-range interagyaye found from our numerical computations strong evi-
tions. In the classical limit the thermal average is either eXyance thata<1/2. We have also tried to reanalyze the

pressed as the weighted mean value for fixed configurationg,q,n high-temperature seri€g] but we have not reached
of the border spin variablehe P approachor itis given by firm conclusions.

an effective Hamiltonianthe Q approach The effective
hamiltonian is acting on the border spin variabteand may
contain higher-order terms in (i.e., correlationswith cor-
responding coefficients. We have proposed a systematic way The authors thank Professor H. Bloand Professor J.

to calculate these coefficients either by imposing some selfRogiers for some discussions and gratefully acknowledge the
consistent conditions on the correlation functions or by exaccess to SGI Power Challenge XL, Cray YMP-EL, and
ploiting the series expansion technique. We have accomCray J916 in the Supercomputing and Networking Center in
plished a much faster improvement with respect to the MFAPoznan Partial financial support of the Committee for Sci-
predictions by increasing the order of approximation than byentific Research within the Grant 2 P302 116 06 and a grant
increasing the size of the cluster. For quantum systems wigom the Flemish Foundation for Scientific ReseafElvO)
have considered a variant of tl@@ approach and we have is also acknowledged.
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