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Modified effective-field approach to low-dimensional spin-1/2 systems
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Two different generalization schemes for the molecular field approximation are described. Both contain the
possibility to incorporate generalized effective fields that induce correlations between the degrees of freedom
at the boundary of a chosen cluster. Applications are presented for low-dimensional spin-1/2 systems. For the
Ising models the critical couplings and critical exponents as well as the spontaneous magnetization curve are
determined. An application of the method to the quantumS5

1
2 one-dimensional Heisenberg model is presented

and reliable low-temperature estimates of the specific heat are evaluated. The data are combined with the
quantum transfer matrix predictions for large system sizes and this leads to the following prediction for the
low-temperature specific heat:C5ATa with a50.3560.07. @S1063-651X~97!08006-9#

PACS number~s!: 64.60.2i, 75.10.Hk, 75.10.Jm, 75.40.Mg
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I. INTRODUCTION

The molecular field approximation~MFA! remains an im-
portant tool in the study of complex problems in solid-sta
physics and statistical mechanics. Whenever exact des
tion of the critical behavior is impossible, usually a qualit
tive understanding of the phase diagram can be achie
within MFA @1,2#. In higher dimensions, where most of th
sophisticated methods fail, MFA, in general, works bet
than in lower dimensions, and its predictions for the critic
exponents become exact above the upper critical dimens
Due to its wide applicability, the mean field approach d
serves further study. Especially in low dimensions many c
rection schemes have been undertaken to improve the a
racy of the MFA results.

In the present paper we summarize our ideas, previo
presented in some preliminary reports@3,4#, and we supple-
ment them with some applications to both the classical Is
and the quantum Heisenberg model. We show how the
tion of correlations can be embedded in the MFA appro
and how the idea of the effective field with correlations c
be merged with the exact finite-size calculations for quant
systems. Despite the relatively small system sizes avail
in the direct diagonalization technique, good estimates of
calculated quantities are obtained, when compared to the
act ones for the one-dimensional~1D! XY model @4,5# or to
those well established in the literature@6–8#, or even to those
calculated here in the framework of the quantum trans
matrix. This demonstrates the advantages of the method
the investigation of the thermodynamic properties of lo
dimensional spin systems and prompts us to calculate
low-temperature critical exponent for the specific heat of
1D isotropic Heisenberg model. The conformal field theo
has failed to give a conclusive answer in this case so far@9#.
Some approximate theories, including the Bethe ansatz i
gral equation method, have yielded the spin wave va
a51/2 @10–12# whereas the numerical techniques have p
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dicted a lower value@13#. Our estimatea50.35 is consistent
with that inferred from the Monte Carlo simulations@13#.

II. FORMULATION OF THE METHOD

Let us consider first a classical spin system with sho
range interactions. The lattice then can be divided into
finite clusterV, its boundary]V, and the complement o
Vø]Vdenoted byV̄. The Hamiltonian of the system can b
written in the form

2bH5H0~V,]V!1H1~]V,V̄!, ~1!

whereb51/kBT andkB is the Boltzmann constant. This im
plies for the thermal expectation value of an operatorA

^A&5 (
$t,s,s̄ %

A~s,t!eH0~s,t!1H1~t,s̄ !Y
(

$t,s,s̄ %

eH0~s,t!1H1~t,s̄ !, ~2!

where the spin degrees of freedom are denoted assPV, t

P]V, ands̄PV̄. Hereafter we assume thatA5A(s,t) and
we aim at finding an efficient way for estimating the avera
~2!. We follow two approaches.

In the first approach~the P scheme! the boundary]V is
fixed in a particular state or is described by a probabi
distribution P(t) so that the expectation valuêA& is a
weighted average

^A&5(
$t%

P~t!S (
$s%

AeH0Y (
$s%

eH0D . ~3!

The exact expression forP(t) is given by

P~t!5(
$s%

eH0~s,t!(
$s̄%

eH1~s,t!Y (
$t,s,s̄ %

eH01H1 ~4!

so that the probability distribution functionP(t) exists and
can be written as
144 © 1997 The American Physical Society
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56 145MODIFIED EFFECTIVE-FIELD APPROACH TO LOW- . . .
P~t!522NS 11(
i

^t i&t i1(
^ i , j &

^t it j&t it j

1 (
^ i , j ,k&

^t it jtk&t it jtk1••• D , ~5!

whereN is the number of all thet spins and the prefacto
ensures the normalization. The standard MFA consists in
ing the boundary spins and its distribution is given by t
expression

P0~t!5)
i

d~t i2m!, ~6!

wherem is a parameter calculated self-consistently fro
m5^s&. An improved choice@14,15# for the Ising model is

P1~t!522N)
i

@~11m!d~t i21!1~12m!d~t i11!#

522N)
i

~11mt i !, ~7!

where the variablest i are subject to the independent bina
distributions. The probability distributionP1(t) can be eas-
ily obtained from the expression~5! by a simple decoupling
of the correlations. Another decouplingP2(t) of the prob-
ability distribution function consists in

P2~t!522N)
i

~11ait i !)
iÞ j

~11bi j t it j !•••, ~8!

where the coefficientsbi j take into account the correlation
between the spinst of the border. The symmetry of th
cluster will be reflected in symmetry properties of these
efficients.

A second approach~theQ scheme! is formulated in the
spirit of the mean-field theory. It is based on the idea that
may correct for the neglect ofV̄ by introducing extra mo-
lecular fields acting on the boundary]V of the system and
the thermal average

^A&5 (
$t,s%

AeH0~s,t!1H8~t!Y (
$t,s%

eH0~s,t!1H8~t ! ~9!

is determined by the effective field HamiltonianH8(t) de-
fined as

eH8~t![Q~t!5(
$s̄%

eH1~t,s̄!. ~10!

This scheme would be exact if one could calculate the sum
Eq. ~10!. The standard cluster MFA@16# includes only the
symmetry breaking fields in the effective Hamiltonia
H8(t) so that

Q0~t!5)
i

~11a8t i !}expS a(
i

t i D . ~11!

The presence of an effective fielda is due to the spontaneou
symmetry breaking of the order parameter. The assump
x-

-

e

in

n

of standard MFA is indeed thata is proportional to the order
parameter̂ s&; therefore, we will calla the effective order
parameter. An extension of the mean-field theory similar
ourQ approach has been developed by Suzuki and applie
the context of the coherent anomaly method@17#.

The functionQ(t) can also be expanded in a form such
Eq. ~8!, with coefficients that in general will be differen
from those appearing in the expansion ofP. This implies that
the effective Hamiltonian

H8~t!5(
i
ait i1(

i , j
bi j t it j1•••, ~12!

apart from the standard linear term int, may also contain
higher-order terms int, i.e., some correlations between th
border spins.

To improve the simplest approximation, two scenar
can be followed both within theP approach of Eq.~4! or
within theQ approach of Eq.~10!, which are based on the
concept of the self-consistent parameters and the series
pansion technique. Self-consistent conditions can be impo
on the magnetization and the spin-spin correlation functi
in order to determine the coefficients inP orQ. Correlations
inside V may, e.g., be imposed to be equal to equival
correlations inside]V. Besides nearest-neighbor, also ne
nearest neighbor or higher-order correlations may be con
ered. One should remark that, although the number of c
ficientsai , bi j , . . . in the exact expressions is finite, it is
general not possible to write down a closed set of s
consistency equations for them; the number of availa
equations is always smaller than the number of parame
However, even in the lowest linear approximation in E
~12!, our self-consistency condition̂s&5^t& leads to some
improvement with respect to MFA.

In the second scenario, standard series expansion t
niques in expressions~4! or ~10! can be applied and approx
mate expressions can also be found in theP andQ schemes
for the correlations induced throughH1.

Both theP andQ approaches in the lowest order~equa-
tions ~7! and ~11!, respectively! can be combined with the
mean-field renormalization-group method~MFRG! @18#, to
obtain nonclassical critical exponents. The renormalizat
mapping K85K8(K,h), h85h8(K,h) is found from the
scaling behavior of the cluster magnetizations in theP or
Q approach. Ifmj (K,a,h) represents the magnetization
the j th system (j51,2) for a given couplingK, an effective
order parametera and magnetic fieldh, and we define the
rescaling factorl throughl d5N/N8 for two clusters withN
andN8 sites (N.N8), then within MFRG@18#

m1~K8,a8,h8!5 l d2yhm2~K,a,h!,

whereyH is a critical exponent, and the effective order p
rameters fulfill a85 l d2yha. Implementing MFRG, an at-
tempt to include correlations in a self-consistent way m
lead to some inconsistencies.

III. APPLICATIONS TO THE ISING MODEL

The efficiency of the method is demonstrated for the Is
models
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146 56G. KAMIENIARZ et al.
H52K(
^ i ,d&

s is i1d , ~13!

with nearest-neighbor interactions. Here^ i ,d& denotes that
the summation runs over the nearest-neighboring pairs
spins.

At first, we consider clusters withLd sites on the hyper-
cubic lattices ind52 andd53 and we apply theP scheme.
The critical couplingsKc5J/kBTc are given in Tables I and
II for d52 andd53, respectively. The cluster MFA an
MFRG results are displayed in the second and third colum
respectively. In the fourth and fifth columns of Tables I a
II our Kc predictions are given for theP approach with up to
two correlations in Eq.~8! and for our implementation o
MFRG in the framework of theP scheme on twoL and
L21 clusters~denoted byPRG). Moreover, thePRG esti-
mates are further improved ind52, implementing a three
cluster MFRG@19# ~with L, L21, andL22 clusters!, as
demonstrated in the sixth column of Table I~denoted by
P2
RG).

TABLE I. The critical couplingKc of the classical 2D Ising
model found for different sizeL of the cluster. The second and thir
columns display the standard MFA and MFRG results. The fou
column contains the results obtained within the self-consistenP
scheme, whereas the fifth and sixth columns contain those fo
from theP approach combined with the MFRG method on two a
on three clusters, respectively. The seventh column shows th
sults evaluated within the self-consistentQ scheme, while the
eighth and ninth columns illustrate the predictions obtained wit
theQ scheme by using series expansions and the Pade´ approximant
technique for the correlation functions.

L MFA MFRG P PRG P2
RG Q QP QP-RG

1 0.250 0.324 0.346 0.408
2 0.286 0.361 0.382 0.371 0.412 0.415 0.42
3 0.308 0.381 0.395 0.385 0.404 0.417
4 0.323 0.393 0.395 0.418 0.420
5 0.335 0.401

Exact 0.4407

TABLE II. The critical couplingKc and the critical exponents in
the framework of theP scheme for the classical 3D Ising mod
with different sizeL of the cluster. The second and third colum
display the standard MFA and MFRG results. The fourth colu
shows the result calculated self-consistently without correlatio
The fifth column shows an implementation of the MFRG method
theP scheme. The corresponding critical exponentsyT andyH are
presented in the seventh and ninth columns and preceded, for
parison, by the original MFRG ones.

L MFA MFRG P PRG MFRG PRG MFRG PRG

yT yH

1 0.167 0.197
2 0.182 0.207 0.209 0.82 0.902 2.00 1.99
3 0.191 0.212 0.95 2.08

Exact 0.22165 1.59 2.484
of

s,

The critical exponentsyT andyH for the thermal and or-
dering fields follow from the linearized recursion relatio
and are given in the corresponding columns of Table III
d52 and Table II ford53.

For the Q and P schemes, we have performed se
consistent calculations in 2D including the pair correlatio
up to the third neighbors. In Table IV the variation of critic
couplingKc is shown for different system sizesL and dif-
ferent number of correlations within theQ approach. The
total number of correlationsn is specified in the first column
When n50, only symmetry breaking fields are present.
the last row, three successive correlations are taken into
count and the self-consistency conditions require cluster w
linear sizeL>3. The best results found self-consistently f
different cluster sizes were already used in Table I. Th
found from theP approach are given in the fourth colum
whereas those from theQ approach are in the seventh co
umn.

Next we report some self-consistent results for the tri
gular lattice, which is especially suited for our methods, a
we approximate bothP andQ by an expression such as E
~8!. We choose anV cluster consisting of a single site wit
spin variables whereas its six nearest neighbors with sp
variablest form the border]V. The results forKc in both
approaches are given asPsc andQsc in Table V. In the first
approximation, referred to as order 1,a is determined by
imposing^s&5^t& andb50; in the second approximatio
b is determined througĥst&5^t1t2&. These estimates o
Kc should be compared with the simple mean-field res
Kc'0.1667 and the exactKc'0.2746. In the second ap

h

nd

re-

n

n
s.

m-

TABLE III. The critical exponentsyT and yH of the 2D Ising
model for different linear sizeL of the cluster. MFRG denotes th
results obtained by using the MFRG method.PRG andP2

RG denote
the results of theP scheme combined with the MFRG method o
two and on three clusters, respectively. The columns denoted
QP-RG contain the estimates of theQ scheme and Pade´ approximant
analysis in conjunction with MFRG.

L MFRG PRG P2
RG QP-RG MFRG PRG P2

RG QP-RG

yT yH

2 0.69 0.822 0.801 1.50 1.490 1.71
3 0.78 0.930 0.942 1.57 1.585 1.609
4 0.82 0.979 0.996 1.60 1.636 1.676
5 0.84 1.62

Exact 1.000 1.875

TABLE IV. The critical couplingsKc in the framework of the
Q andP schemes for the 2D Ising model with different linear si
L of the cluster. The number of succeeding correlationsn included
in self-consistent calculations is defined in the first column.

Q scheme P scheme
n L51 L52 L53 L54 L51 L52 L53

0 0.346 0.353 0.368 0.378 0.324 0.342 0.35
1 0.376 0.392 0.400 0.361 0.370
2 0.412 0.414 0.416 0.382 0.395
3 0.417 0.420
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56 147MODIFIED EFFECTIVE-FIELD APPROACH TO LOW- . . .
proximation, it turns out that the pair correlation^st& is
finite and attains at criticality the value 0.492, which is of t
correct order of magnitude with respect to the exact va
0.667.

We report also the results found from a series expans
of Q on the same triangular lattice. In the definition~10! of
Q we write

eK s̄ i s̄ j}~11xs̄ i s̄ j !,

with x5tanhK, and we expand the correlation factors in a
cending powers ofx. It can be noticed thatQ contains a
factor (11bt it j ) for each pair of nearest neighbors in]V
and an extra factor (11ct it j ) for each next-nearest
neighbor pair, with

b5x~11x12x214x31••• !

c5x41•••. ~14!

The series expansion results forKc are given in the fourth
column of Table V, referred to asQse. Here various approxi-
mations are obtained forQ, defined by the order inx of the
parametersb andc. In Table V we present the variation o
Kc according to the number of terms kept in Eq.~14!. Fur-
thermore, each approximation may be improved by replac
b by a corresponding Pade´ approximant inx. These results
referred to asQP, are displayed in the fifth column of Tabl
V.

Similar series expansion calculations are carried out
the square lattice. We have evaluated the magnetization
sitem1 andm2 for L51 andL52 clusters, using pair cor
relation functions up to the sixth order inx,

^sasb&'x1x312x51•••,

^sbsc&'x2~112x214x41••• !, ~15!

wherea andb denote the nearest-neighbor sites whereab
andc represent the next-nearest-neighbor sites. Using P´
approximants we have obtained the critical couplings giv
in the column labeledQP in Table I. We remark that there i
a fifth-order next-nearest-neighbor correlation in the lar
system.

TABLE V. Estimates for the critical couplingKc for the trian-
gular Ising model. The second and third columns illustrate the s
consistentP andQ predictions with no correlations~the first order!
and the nearest-neighbor correlations~the second order!, respec-
tively. In the last two columns the estimates calculated by us
series expansions (Qse) and the Pade´ approximant technique (QP)
are given.

Order Psc Qsc Qse QP

1 0.197 0.2025 0.2270 0.2270
2 0.226 0.2522 0.2373 0.2415
3 0.2441 0.2542
4 0.2498 0.2562
Exact 0.2746
e

n

-

g
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n

r

The corresponding series expansions forQ may also be
combined with the MFRG method on two clusters consist
of N851 andN54 sites. This simple procedure leads
rather accurate estimates ofKc ~the column denoted by
QP 2RG in Table I! and the critical exponentsyT and yH
~Table III!. An intriguing question is whether the values o
tained foryT really converge to 1, or overshoot this exa
value. Unfortunately, calculations forL>5 are at present no
feasible; calculations on too large clusters are furtherm
not in the spirit of the present approach.

Our approach is also a suitable tool for the calculation
the temperature-dependent thermodynamic properties of
Ising model. The magnetization profiles are presented in
1. The lower dotted curve is drawn according to the ex
result of Yang@20# while the upper one illustrates the sta
dard MFA predictions. The solid curves lying in betwee
have been calculated here within theQ scheme for aL53
cluster. The labeln represents the number of succeeding p
correlations included in our approach. The upper curve de
onstrates the behavior of magnetization found from the s
consistent calculations with no correlations between bor
spins. The middle one, labeledn51, represents ourQ pre-
dictions if only nearest-neighbor correlations are includ
The remainingn52 curve shows the magnetization profile
both the nearest- and the next-nearest-neighbor correla
are included inQ. For the sake of clarity, we have onl
plotted in Fig. 1 our magnetization curves forL53. The
improvement of the magnetization behavior is also very s
tematic with each subsequent number of correlations ta
into account for smaller clusters.

TheQ approach of Eq.~10! proves to be the most effi
cient. This is most pronounced in one-dimensional proble
where theQ method yields exact results for classical 1
Ising systems in a magnetic field. This success is due to
fact thatH8 contains only those correlations that come fro
interactions throughV̄ and not those from interaction
throughV. The correlation between the leftmost and righ
most site of a finite segment of a line, however, is complet
due to interactions through this segment. Ift1 andt2 are the
two boundary spins of the segment, this means t
Q(t1 ,t2) does not contain any correlation and factorizes
Q5q(t1)q(t2). The functionq(t) can then be determine

f-

g

FIG. 1. The magnetization as a function ofK215kBT/J for 2D
Ising model.
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148 56G. KAMIENIARZ et al.
by a recursive argument and this makes the Bethe sch
exact in one dimension, whereH8 consists only of a simple
molecular fieldh(t11t2).

IV. APPLICATION TO THE QUANTUM
HEISENBERG MODEL

For quantum mechanical models, the factor exp(H1) in
general cannot be extracted from the Boltzmann factor.
stead, we should define

eH01H85(
s̄

eH0~s,t!1H1~t,s̄ !, ~16!

whereH8 may also depend on the variabless from the in-
terior of the clusterV.

Approximate expressions forH8 may be derived from Eq
~16! using, e.g., the Baker-Campbell-Hausdorff formula
Feynman’s identity. The previous mean-field-like scenario
also possible here, if the strongest contributions toH8 appear
at or around the boundary]V. By symmetry arguments, th
form of the most important terms inH8 can then be imposed
and its parameters can be determined through s
consistency conditions. The first successful applications
this scenario have been undertaken for theXY model @4#.

In this work we follow the mean-field scenario and we u
our method in conjunction with the finite-chain diagonaliz
tion technique for the Heisenberg model. The exact dia
nalization technique has been widely used for the lo
dimensional spin systems@6,8,21#. At higher temperatures
the extrapolation technique yields then very consistent p
dictions in the macroscopic limit. The convergence of t
extrapolations deteriorates with decreasing temperature.
aim is to improve the convergence of the low-temperat
specific heat predictions.

As to the 1D isotropic Heisenberg model, there is no b
ken symmetry in this model and we have no external field
H8. We expect the main contribution toH8 in the form of
additional Heisenberg interactions between the spins at
edges of the finite segment. Thus the effective Hamilton
can be chosen in the form

H01H8'
1

2
K (

i51

N21

sW i•sW i11

1
1

2(i51

L

Ki~sW i•sW i111sW N2 i•sW N2 i11!, ~17!

whereK denotes the bare couplings and theKi denote the
additional nearest-neighbor couplings for the external sec
of the chain of the lengthN. L is the number of such addi
tional terms taken into account~evidently, we must choose
L<N/2). sW represents here the vector of the Pauli spin m
trices. The couplingsKi are subject to self-consistency co
ditions for the corresponding correlation functions: we m
impose that the nearest-neighbor correlations in the exte
sectors are equal to the average correlation function in
internal segment.

Using our method we have calculated the zero-field s
cific heatC of the model under consideration in a wide tem
perature region, performing direct diagonalization with fr
e
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boundary conditions. The results illustrated by dots in Fig
yield the smooth curve and are consistent with those fo
previously @6–8#. For every considered point in the regio
kBT/J<2.0, computations were carried out by the stand
finite-segment calculations, i.e., with no additional Heise
berg interaction included at the ends of a cha
(2<N<15) as well as with up to 2 extra effective coupling
Ki included. ForkBT/J>2.0 only the standard finite segme
calculations have been performed and the results coin
with those found from the high-temperature expansions@7#.
We have found the extrapolated data plotted in Fig. 2
three different approximations~17!—the one with no extra
interactions in the external sectors and those withL51 and
L52 additional interactions. As an example, Fig. 3 sho
the variation of the finite-size specific heat estimatesC ~per
site, in units ofkB) with respect to 1/N for kBT/J50.1. The
standard finite chain results are illustrated by the square
Fig. 3. The results obtained with one and two self-consist
parameters are given by triangles and asterisks, respecti

FIG. 2. The zero-field specific heat per site for the isotropic
Heisenberg model.

FIG. 3. Variation of the zero-field specific heat per site
kBT/J50.1 against 1/N for the finite-chain diagonalization dat
(3<N<15; the symbolsh, n, and! represent the standard, one
and two-parameter approximation, respectively! and against 1/m2

for the transfer-matrix data (1 symbols, 3<m<13). All data con-
verge towards the point denoted by a circle.
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56 149MODIFIED EFFECTIVE-FIELD APPROACH TO LOW- . . .
One can see a good convergence of the data towards
extrapolated value denoted by a circle in Fig. 3. The eff
tive interactionsKi at the ends of the chain improve th
convergence and yield consistent estimates of the extr
lated values down tokBT/J50.04 with an accuracy highe
than before@6#.

In order to verify our results in the low-temperature r
gion (kBT/J<1.0), we have also performed extensive qua
tum transfer-matrix~QTM! @22# calculations based on th
real-space decomposition. The details of the technique
be found elsewhere@22,23#. We have considered chains wit
length up toN5360 and we have reached the sizem in the
Trotter direction (m<13) far beyond what we are aware
in the literature. An example of our QTM data is included
Fig. 3 and plotted by crosses against 1/m2. We have found
our QTM extrapolated values in 1/m2 consistent with our
effective-field results based on the approximation~17!. Ac-
tually, despite the large system sizes reached in our Q
calculations, the data follow a rather steep curve and do
diminish the uncertainty~below 1% in the lowest tempera
tures! found from the finite-chain extrapolations.

We would like to exploit the high accuracy of ou
specific-heat results and to extract the corresponding cri
exponent a in the zero-temperature limit. The low
temperature behavior of the specific heat in the log-log sc
is illustrated in Fig. 4 for 0<kBT/J<0.1. Our numerical data
are represented by diamonds and are connected by a str
line. Due to the observed nonlinearity, corrections to sca
in the form

C5ATa~11BlnbT! ~18!

have to be taken into account. We have tried first the pow
law correction term but we concluded that our data all
only logarithmic corrections. We have fitted the scaling fo
~18! to our numerical data for a given numbern of the data
points starting from the reference temperaturekBT0 /J. As
the distanceD between successive temperatures amount
0.01, we have fixedkBT0 /J and we have performed the fi
ting procedure in the temperature regionnD. The results of
our analysis are given in Table VI, where the first colum
contains the reference temperature and the second co
specifies the width of the temperature region. The unkno
critical exponents and amplitudes are collected in the

FIG. 4. The logarithm of the zero-field specific heat per site
the 1D Heisenberg model vs the logarithm ofkBT/J.
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maining part of Table VI. The data for the leading expone
a and the corresponding amplitudeA are consistent and en
able a conclusiona50.3660.06 andA50.2060.03.

Another attempt to find the exponenta is related to some
thermodynamic considerations for the specific heat and
total entropy gain. As to the specific heat,

E
0

`

C~T!dT5U~`!2U~0!50.5, ~19!

whereU(T) means the internal energy in units of the inte
action parameterJ. This integral can be calculated numer
cally under a smooth curve spanned over our numerical d
C(T), starting from a certain temperatureT0. In order to
estimate the corresponding contribution forT<T0, the
C(T) dependence is approximated by the leading term in
~18!. Referring to the condition~19! and imposing continuity
atT5T0, the unknown amplitudeA and the critical exponen
a can be evaluated. The calculations were performed
different values ofkBT0 /J in order to estimate the uncertain
ity of our solutions. Taking into regard the scatter of t
results presented in the second and third columns of Ta
VII, we get a50.3360.02 andA50.2360.02.

We can also estimate numerically the total entropy ga
which amounts to ln2. Assuming the power-law behavior
the specific heat in the low-temperature limit and the relat
dS5C(T)dT/T, the values of the parametersa andA can
be found in a similar way as before. In this case the lo
temperature contribution to the integral is significantly e

TABLE VI. Scaling analysis of the low-temperature numeric
specific heat data. The fitting is carried out in the temperature
gion starting fromkBT0 /J and the width 0.01n. The leading critical
exponent is denoted bya, the corresponding amplitude byA, the
subleading exponent byb, and the corresponding amplitude byB.

kBT0 /J n a A b B

0.04 7 0.357 0.185 0.480 0.190
0.04 12 0.320 0.180 0.501 0.130
0.04 15 0.304 0.175 0.494 0.120
0.05 7 0.367 0.184 0.673 0.182
0.05 12 0.382 0.210 0.017 0.188
0.06 7 0.337 0.177 0.541 0.174

TABLE VII. Estimates of the specific-heat critical exponenta
and the amplitudeA obtained from a numerical analysis of th
thermodynamic identities. For different intermediate temperatu
kBT0 /J the second and third columns present the results when
identity for the specific heatC is exploited, whereas the fourth an
fifth columns present those for the entropyS.

kBT0 /J a A a A
C S

0.04 0.332 0.225 0.412 0.291
0.05 0.341 0.234 0.409 0.286
0.06 0.343 0.235 0.404 0.279
0.07 0.334 0.228 0.398 0.270
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hanced. After analysis of these results~Table VII, the fourth
and fifth columns! we have obtaineda50.4160.02 and
A50.2960.02.

Taking into account our analysis we end up with the co
clusion

a50.3560.07 and A50.2360.05. ~20!

V. CONCLUSIONS

We have presented a effective-field approach applica
to classical and quantum systems with short-range inte
tions. In the classical limit the thermal average is either
pressed as the weighted mean value for fixed configurat
of the border spin variables~theP approach! or it is given by
an effective Hamiltonian~the Q approach!. The effective
hamiltonian is acting on the border spin variablest and may
contain higher-order terms int ~i.e., correlations! with cor-
responding coefficients. We have proposed a systematic
to calculate these coefficients either by imposing some s
consistent conditions on the correlation functions or by
ploiting the series expansion technique. We have acc
plished a much faster improvement with respect to the M
predictions by increasing the order of approximation than
increasing the size of the cluster. For quantum systems
have considered a variant of theQ approach and we hav
a
,

o

-

le
c-
-
ns

ay
lf-
-
-

y
e

defined an effective Hamiltonian with extra nearest-neigh
interactions at the end of the chain.

As an illustration we have applied our approach to t
classical Ising model and to the 1D Heisenberg model.
have seen for the Ising model a systematic improvemen
our predictions for the critical couplingKc and the critical
exponents~implementing MFRG! both for theP and theQ
approach. In the quantum case we have evaluated the spe
heat and we have extracted the corresponding critical ex
nent. We have confirmed our low-temperature estimates
the specific heat by large-scale QTM calculations so that
have found from our numerical computations strong e
dence thata,1/2. We have also tried to reanalyze th
known high-temperature series@7# but we have not reache
firm conclusions.
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